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ABSTRACT

The dynamic analysis of the wall of a fluid-filled

unstiffened nuclear containment vessel , to the fluid pree—

F sure exerted on it when the relief valve discharge piping

is cleared, is extended into the plastic range using two

versions of an elastic-plastic shell theory.
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1. INTRODUCTION

In an earlier study, (Ref. (1]), a method was presented

for obtaining the dynamic elastic response of a fluid-filled

nuclear containment vessel when the relief valve discharge

piping is cleared. In this thesis, the method is extended

into the plastic range, using modified versions of a plas-

ticity theory for shells introduced by Bieniek and P’umaro

(Rem . [2], (3]). Alternatively, this investigation could

have been conducted without using a shell theory . Instead,

the field equations of classical elastic-plastic theory

could be applied at shell layers and then integrated through

the thickness (see, e.g., Refa . [~i] to (8]) . This latter

procedure, however, may require prohibitively large comput-

er storage capacity.

The water-filled circular cylindrical shell, shown in

Fig. 1, is the model used for the lower portion of a nucle-

ar containment vessel. It is acted upon by a cylindrical

( axisymmetric ) wave whose time history is shown in Pig. 2

( with magnitude normalized to 1 psi) and whose variation
with depth is illustrated in Fig. 3. This approximat.s

• (see Ref. [9]) the pressure exerted on the vessel wall when

the relief valve is cleared. The spatial. and temporal var-

iation of displacement, moment, and hoop stress in the cy-

lindrical steel wall is to be determined. 
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2. FORMULATION OP THE PROBLEM

21 Fluid Eauatiq~~
Assuming linear compressibility, the pressure p(r,z,t)

in the contained water, and its (vector) velocity ~(r ,z,t)

satisfy the equations (Ref. f~oJ)

_ _  
2at -ec .u (1)

C’ at - V p  (2)

in which:C is the density of water; c is the velocity

of sound in water; and V is the (vector) gradient oper-
ator, and the dot denotes acalar multiplication.

The continuity requirement, that the radial fluid velo-

city at the shell surface be aqua]. to that of the shell,

may be written as

— u(r1) ( 3 )

in which u(r,z,t) is the radial component of the fluid ve-

locity ~, r is the radial coordinate as in Fig. 1, and

w is the radial. displacement of the shell, assumed positive

outward.

Li  _ _ _ _ __ _ _ _
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The boundary conditions to be satisfied area

w(i. ,t) 0 (k)

•

—(l,t) 0. (5)

Equations (11.) and (5) assume that the shell bottom is fix-

ed. 1, as shown in Fig. 1 , is the depth of the shell

wall .

• ~—!(0 ,t ) = o  (6)

-‘3dw
= 0 (‘7 )

dz

Equations (6) and (7) assume the shell top to be free.

u(r1,z,t) — 0 ( O 4 z ~~L) (8 )

Equation (8) assumes the pedestal (rigid cylindrical aur-
• face of Fig. 1) to be rigid, so that the radial fluid vel-

ocity is zero there. L is the depth of the flat rigid

bottom from the free water surface, as shown in Pig. 1.

v (r ,L , t )  0 (r1~~r~~r2 ) . ( 9)

Equation (9) states that the flat portion of the vessel ’s
_ _ _ _
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bottom (see Fig. 1) is rigid, requiring that the axial com-
ponent v(r,z,t) of the fluid velocity u vanish there.

[u SiflCC+ V CO8 OC] s~l#(r r)tan oc o r2~~r~~r3 :(1O)

Equation (10) states that the sloping bottom of the con-

ta.thment vessel (see Fig. 1) is rigid, so that the compo-
nent of fluid velocity norma]. to it is zero.

p(r,O,t) = 0 (r1~ r~~r3). (11)

Equation (11) states that the fluid pressure on the free

surface is zero.

Initial, rest conditions require that

w(r ,0) = 0 (12)

—(z,o) = 0 ( 13)

p(r,z,O) = 0 (1~i)

~~(r ,z ,O)  = 0 (15)

Note that Eqns (2), (3), (11), (12) and (114 ) constrain

the shell displacement at the fluid surface to be zero. i.e.
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2 , 2 Shell Equations

From the radial component of the shell displacement .

w(z,t), assumed positive outward as shown in Fig. 1, the

circumferal strain € and longitudinal curvature 4~ of the
shell are obtained as

w
€ — — (17)

r3

~ (18 )

The corresponding stress resultants are, respectively,

the circumferential. force per unit of length, N, and lon-

gitudinal moment per unit of length, M, which satisfy the

stress equation of motion (see, e.g., Ref. [11) )

N �2w
—

~~ 
+ — = p1(z , t)  + p(r 3,t)  - p3h ~~~~~~~ (19)

in which E is Young’s modulus, p1 is the incident pres-

sure of Figs. 2 and 3 caused by the relief valve clearing,

• is the mass density of the shell, and h is the shell

thickness.

The total strains of Eqs. (17) and (18) will be ob—

tam ed as a superposition of elastic and plastic components a
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E . .€ E + € P (20 )

k .~~E ~~~~ (21)

Using matrix notation,

€ 
(22)

It

- 

I Eqs . ( 20) and (21) become

e e E + e P ( 23)

2.2.1 Elastic Range

The elastic stress strain relations are (Re!. Clii )

3
M =  2 11 (2~1.)i 2 ( 1— Y

N E h €E (2 5)

in which y is Poisson’s ratio. E is Young’s modulus , and

h is the shell thickness. Letting

(2 6 )

- ~~~~~~~~~~~~~~~~~~~~~ ~•.-- - -. -~~~ - - ,--- - -  ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~ ~~~~~~~~~—— —- ~~ -~~~~~~~ - - —. —•--
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and

Eh 0
(27 )

0 Eh-~
12( 1—v 2 )

be the stress and elastic modulus matrix, respectively, Eqs.

(24 ) and (25) may be written in matrix form as

S E e E E ( j -~~~~) (28 )

Substituting Eqs. (17), (18), (24) and (25) into the

stress equation of motion, the elastic displacement equa-

tion of motion is obtained as

& ~
2w

12(t—y2) ~~~~~~~ 

+ — w = p1 + p (r
3
) - C5h —

~~~~ (29)

2.2.2 Elasto—P].pstic Ran&e

The shell will be assumed to yield when the yield con-
• dition

‘N + + 2 I’MNI = 1 (30)

in wh ich

J -“ -~~~~~~~ 

(3~)
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M 2
1M = (32)

Mo

MN
MN 2M0N0

is satisfied. This relation is obtained from that general

three dimensional (condition ) used by Bieniek arid Funaro

(Ref. [2) ) , for the axisyuametric conditi on of the problem

being considered , when Poisson ’s ratio effects ( i. e . ,  in-

duced circumferential momenta) are neglected. In Eqs.

(31 ) — ( 33) ,

N0 = a’0h (34 )

and

h
2

M0 = ( 35 )

-

• in which is the uniaxia]. yield stress; N0 and M0 are,

respectively, the axial force at which yielding occurs ir~
the absence of bending , and bending moment at which yield-

ing occurs in the absence of axial force, in a beam .

I! circumferential moments are again ignored , the ii-

mit function suggested in Ref.  C2 1 is

= 1  (36 )

_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In Fig. 4 , the yield and limit surfaces corresponding to

Eqs . (30 ) and (36 ) are displayed .

In con junction with the yield and limit functions of

Eqs . (30 ) and (36), it is proposed to use a loading function

= ‘N + ‘~~ 
— 1’MN f = 1 (37 )

in which
2 *

* 
M - 2MM

1M = 2 — (38~

In Reference [2) ,

* 
(M - M ~)

2

2 (39)

is used. For stress points near the axis M = 0 the result-
trig loading functi on can lead to a violation of Drucker’s

second postulate (Ref .  [12) )

*~ ~~~~~~ (40)

first postulate (Ref. r12) )

‘I (!-~~~
) ~~~~~~ (Lit )

* In the Appendix, an alternate procedure for overcoming
this diff icul ty is considered .
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in which is any stress point within the loading function

P=1, is satisfied using either expression for 1 since the

resulting loading surfaces are convex and an associated

flow rule will be used.

As in Ref. [2] , it is proposed that the hardening
parameter M* increase during plastic loading according to
the rule

G dIc1’
— = 2(1

~ FL ) — (42)
GM

in which M0 and IC0 are related by Eq. (214.),

1/2

G = _ _ _ _ _  

2 
+ 

[~~~~ M0 ]  

2~

is the absolute value of the gradient of the loading sur-

face in nondimensional space , and

GM ( 44)

is that part of G contributed by bending .

The resulting loading function, shown in Fig. 4, ex-

hibits features of both kinematic and isotropic hardening.

Whenever F=1 lies outside 
~L
’’ FL L is used to determine

_ _  ~~~~~~~~~~~-~~~~~
- - . .- -,-
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Plastic loading is defined to occur when Eq . (37 )  is

satisfied and

aF . aF .
(45 )

in which dots denote differentiation with respect to time.

(Unloading , which is elastic, is characterized by ~F<0,

while for neutral loading , during which the stress point

moves on the loading surface but no hardening occurs, 8F 0).

Letting

= (46 )

aM

The loading condition of Eq. (45) may be written as

. (47 )
as

in which the symbol ~~
‘ denotes transpose.

The plastic strain increment is obtained from the load-

ing function by an associated flow rule

(48 )
a~. 
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in which

— E~~~a8 — —
— 

(49)a~ 3F a?

aIth

* 0
* (5°)M

and

M0 G2
A = 2(1—F ) — (51)

0 M

Eq. (49 ) Is obtained by differentiating Eq. (37 ) and using
Eqs . (28),  (42 ) arid (48) .

Substituting Eq. ( 14.9 ) into Eq. (28 ) differentiated with
respect to time yields *

I — 1 (52)

in which
— 

— •1

— E - —— as— 
— (53)a? ~F

-

_ _ _ _  - - -———-~~~~~~~~-- - -—-~~~~~~~
-—- ---- - -~~~-
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is the elastic—plastic tangent stiffness.

It should be noted that, substituting Eq. (52) into

Eq. (140), Drucker’s second postulate becomes equivalent to

the requirement that ~ be positive definite. 

~~~~~~~ --~~~~~ - ---~~~~~~~~~~~~~~~~~
--

~~~~~~~~~~~ ~~~~~ -~~~~~~ -~~-~~~- 
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3. METhOD OF SOLUTION

The finite element method utilized for the fluid equa-

tion and the elastic phase of the shell motion are identi-

oa]. to those described in Ref. [11 and will not be repeated
here. The two-dimensional grid and molecule used for the

fluid equation, like the one displayed in Pig. 5, arid the

one dimensional grid used for the elastic phase of the shell

motion, shown in Fig. 6 , are also used for the plastic phase.
In what follows the iterative computational scheme

utilized in the (nonlinear) plastic phase is outlined. In

all cases where equations are referenced, the finite diffe-

rence form of the equation was used.

Assume that at a time t~, when the incident pressure

p,(t~) is acting, the stress ~ (t~) strain &(t~) arid

displacement w (t1
) in the shell , and the velocity ~.(t 1)

and induced pressure p(t1) corresponding to a grid point

are known. In this notation and that which follows in this

section, the spatial dependence, usually expressed with sub-

scripts in finite difference form , is supreseed . Let M*(t j)

denote the value of the hardening parameter at t~ which

is the same as the value at the end of the last plastic pha-

as preceding time t~ arid let F(t~ ) denote the loading funo—

tion of Eq. (37) . Then

< 1 .  elastic
F(t~ ) if t1 corresponds to an state (514 )

= 1 plastic
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At a time t~+Lt , when the incident pressure is

P~ (t~+At). w(t~+at) is obtained from Eq. (19) and then
j(ti+&t) from Eqs. (17) and (18). The elastic stress in—

crement corresponding to the strain increment

= ~ (t~ + At) ~(t~) (55)

is obtained from

(A& 1 = E &~~. (56)

in which the subscript 1 denotes a first approximation to

the value which would be obtained from Eq. (28) if were

known. Correspondinly, a stress

A1(t~ + ~.t )  = !(t) + ( 
~~~~~~

can be calculated and substituted into the loading function

< 1 (58a)
F1(t 1 + At ) = i. (58b)

1. (58c )

* Case a can occur only if an elastic change occurs. Thus

j 1(t 1. + At) = ~.(t +At )  (59 )

--- -----—•

~ 

-—-,
~~-• --— 

~~~
• - -

~~~ ~~~
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and the value of all other response functions at t=t 1+ At

are readily determined .

Case b occurs if sri elastic loading brings the stress

point to, or keeps it on , the loading surface and Eq. (59)

again holds. For both cases a and b no updating of the har-

dening parameter M’ occurs.

• Case ~ indicates that plastic strain has occured and

that (As )1 computed fr om (56 ) is an upper bound to the

correct ~ a . As a first correction, determine 
~~ 

using

Eq. (49 ) with F1 , s~ and the last update of M* . This

requires utilization of Eqs. (43), (144) and (51). Now

( A~~~~~~~) is obtained from Eq. (48) arid a second approxima-

tion to ~ (t~ +At ) is obtained from Eq. (28) as

+ At) = E [e - (eP)] (60)

Using 
~2 

, a new value F2(’t1 +~~t) is obtained from Eq.

(37). If 
~2 is ‘~~1,

P2 (t~ +~~ t )  F(t 1 + A t)  (61)

and

+ At )  = ft(t ~ + A t )  (62)

~~ ~2 
is still > 1 by too much , a second iteration is

necessary . 

- — - —~~~~~~~~~~~~~ --~~~~~ - 
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I When Eq. (61) is held to be valid, a check is made to

see that plastic loading has occured, using Eq. (145). if

Eq. (45 ) is satisfied M* is updated using Eq. (42).

The procedure outlined above is illustrated in Pig. 7.

As can be seen in Fig. 4, there are corners in the

loading function along the )I and N axes. At these cor-

ners where two loading surfaces 
~a 

and 
~b 

meet , as in

- Fig. 8, the strain increment is obtained from the linear

combination (Ref. [13j )

+ ~~ ~
Fb (63)

which replaces Eq. (48). In Eq. (63 ), 
~a 

and are

• obtained from Eq. (li.9) with P = and 
~b respectively.

_ _ _  • • • • - — - -—--~~-- —— —--~---- - • --•~~~-- - .-— 
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CHAPTER 4

NUMERICAL R~~ULTS

A steel shell and water, with the following geometrical

and material parameters were used :

h = 1. 44 in. ( . 0366 m)

1 20 f t - 2 i n . (6 .1143 a)

d = 5 f t - 6 in . ( 1.676 rn )

r3 = ’4.2 ft - 1O .5 in. ( 13.07 m )

r2 2L4. ft~~~0 in. (7.315 m )

r1 = 15 ft - 2 i n .  (4.623 m)

L 30 f t - t l in. (9.423 m)

e = 1~91+ lb sec
2/ft4 (2.073 -x 1.0~ kg/rn

3)

= 14.9 lb sec2/ft4 (15 92 x ~~ kg/m
3)

E = 30 x io6 lb/in2 (2 .068 x io u N/rn2 )

c 4790 ft/sec ( 114.60 . rn/a )

= 3600 lb/in2 (2 .14.8 x io8 N/rn2)

The above values are the same as for the problem treat-

ed in Ref. [i~ , except that the shell considered here is

unstiffened .

Before proceding to the numerical solution of

this problem, the elastic portion of the program to be

used, modifisd to account for the stiffeners, was used to

solve the problem of Ref. [i} . A very close numerical

check was obtained.
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The following numerical results were then obtained for

the elastic-plastic problem , using a maximum incident pres-

sure of

50 psi (3. 45x105 N/a2 )

and a time step

t .0002 sec

In Fig. 9, the history of the moment at the base of

the shell , where yielding first occurs, is shown and com-

pared with what would have been obtained elastically. It

is seen that yielding first occurs at t .12 eec , i.e. dur-

ing the second spike of the incident pressure of Pig. 3

(scaled up to a maximum of 50 psi) and that the limit mo-

ment is reached at t = . 22 sec. 1. e., during the third

spike in p1 and at t .36 sec during the f i f th  spike

It should be noted that this graph and those that follow

were plotted using values for each 40 time steps, i.e., for

increments of .008 seconds.

In Fig. 10, the moment diagram when the limit moment

• is reached at the base is displayed , showing clearly that

the plastic zone due to bending is confined to the immedia—

te vicinity of the base.

In Fig. 11, a plot of thes value of the loading function

at the instant when the limit moment is first reached is

Li ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _ _ _ _ _  _ _  

_
_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

20

shown . Note that two internal plastic regions are primari-

ly to hoop stresses.

Fig. 12 compares the history of shell displacement

near the shell center (grid point o~~ 8) with what would ha-

ve baen obtained in a purely elastic response. After ini-

tial yielding at t=.128 sec the plastic displacement ap-

proaches a damped oscillation about a permanently deformed

configuration. The displacement diagram which looks like

Fig. 13 at first yielding, displays this permanent set in

the displacement at grid point oc = 8 in Figs. lka arid llf b ,

when its value reaches a maximum and a minimum, respective-

ly, but does not pass through zero .

Fig. 15 is a plot of the hoop force at grid point

= 8 as a function of time. The limiting value of

is reached twice, at t = .211. sec. ant at t = .232 sec.

At the later time the distributions of hoop stress and plas-

tic zones are shown in Pigs. i6 and 1.7.

Pig. 18 illustrates the hoop stress-strain diagram for

grid point K 8 . Within the global l.ading path denoted

by ~~ , some local unloading occurs. The corresponding

moment-curvature path for the base of the shell is shown in

Fig. 19.

Using the finite difference form of the equation

V =  (64)
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the shear can be obtained. Its time history at the base

and distribution when the limiting moment is reached the-

re are displayed in Figs . 20 and 21. respectively.

Fig. 22 shows the induced fluid pressure on the shell

wall, at grid point ot 8 superimposed on the incident pres-

sure there. The total pressure on the wall is obtained by

superposition of these curves. 

• -~~~~~ - - - --•• . - - -~~~~- --- -~~~~~~ - - • -— ~~~~~



TW

ACKNOWLEDGEMENT

The authors are grateful to Professor Maciej Bieniek

for his frequent consultation and many helpful suggestions. 

• •~~~~~~~~ ~~~~~~—~~~~~~~~~~~~~~~ • •~~~~~~
•_  •_~~~~~• • _ _ _ _



~~~~~~~~~~~~~~~~ 
- -  

:_
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• 22

APPENDIX I

In order to avoid the possibility of violating Drucker ’s

second postulate, Eq. (40), it is not necessary to change

from the expression. Eq. (39), proposed in Ref. [2J ,

to one like Eq. (36). Indeed , in a problem involving a

general state of stress in the shell, it may not be easy to

find a substitute expression. Instead , Eq. (39) can be

used and the positive definiteness of Q (or the positive-

ness of ).) checked by monitoring that

(Al )
38

If ~ >0, set ~ “o in Eqs. (49) and (53) arid treat the

shell as ideally plastic for that time increment. This

preserves the physically desirable softening in N for

stress points close to the N axis.

The calculations described in Section 4 were repeated

using the modified procedure discussed in this Appendix .

Comparison of peak v~lues using the two proposed methods

are made in Table I. It is readily seen that both methods

produce essentially the same results.

_ _ _  ~~~~~~--- • • • - • •--~~~~~_ • --•--



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

23

CONCLUSION

A finite difference technique has been developed for

obtaining the axisymmetric dynamic elastic-plastic response

of a fluid-filled, unstif fened shell using shell theory

(as opposed to three dimensional equations and integrating

through the thickness) in both elastic and plastic ranges.

The method is then used , in two variations, to obtain the

response of the wall of a water filled, nuclear containment

vessel when the relief valve discharge piping is cleared and

fluid pressures exerted O~~ it large enough to exceed the

elastic range. 

- - •- ---- • • • •• • - - -  - - •-•---- 
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TABLE I

COMPARISON OF RESULTS OBTAINED USING

MODIFIED METHOD OF APPENDIX AND

ORIGINAL METHOD PROPOSED IN SECT. 2.2.2

ORIGINAL MODIFIED DIFF .

DISPLACEMENTS Inches Meters Inches Meters

2.76 .07 2,75 .069 .40

1.9 .0482 1.89 .048 1.26

- 
3.8 .0965 379 .0962 .20

3,08 .0782 3.02 .0767 1. 17

MOMENTS Lb. inch Joulea Lb. inch Joulea
(PE~K) 

1514.93.8 1750.47 15503.7 1751.59 .06

—18056.0 —2039.95 —17937.4 —2026.55 .77

10936.3 1235.59 10895.4 1230.95 .40

— 9363. 2 —1 057 .814. - 9359 .6 -1057 . 414 . 04

18195.5 2055.71 18010.0 2034.75 1.00

—17094,7 — 1.931.34 —16994.0 —1919.97 .60

13028.4 i~i7194 12983.2 1466.83 • 1#0

CIMCUMFERENTIAL
FORCES Lbs/inch N/a Lbs/inch N/rn

( PEAK) 
51790.9 9.1.x106 51768.3 9.1x106 .04

51743.7 9.1x106 -51762.7 -9.lxl.06 .04

37014.1.9 6 5x106 36820.2 6 4x106 .60

—4576 2 ,0 -8.0x106 —45688.8 -8 0x106 .20

51281.1 8.9x106 51192.1 8.9x106 .17

-51747.7 -9 1x106 -51432,5 —9 .0x106 .60 
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APPENDIX I I I  - NOTATION

The following symbols are used in this paper :

A = quantity defined by Eq . (5 1)

D = elastic—plastic tangent s t i f fness, matrix defined by
Eq. ( 5 3 )

E = superscript denoting elastic component.

= Young ’ s modulus .

E = elastic modulus matrix , defined by Eq. ( 2 7 )

F = loading function , defined by Eq. ( 3 7 )

Fa~ Fb = loading surfaces meeting at a corner. See Fig.  8.

F1, F 2 = successive iterative approximations to F of Sec . 3.

F0 = y ield function , defined by Eq. ( 3 0 ) .

FL = limit funct ion , defined by Eq. ( 3 6 )

G = gradient of loading funct ion , def ined by ~q. ( 4 3 ) .

GM = contribution to G of bending , defined by Eq. ( 4 4 )

= quanti ty defined by Eq. ( 3 2 ) .

= quant i ty  defined ei ther by Eq. ( 3 8 )  or ( 3 9 )

‘N = quant i ty  defined by Eq. (3 1 ) .

‘MN = quant i ty  def ined  by Eq. ( 3 3 ) .

4 L = total  depth of model of con ta inment  vessel .  See Fig . 1.
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— M — subscript denoting contribution of bending moment.

longitudinal bending moment per unit of length.

hardening parameter.

yield moment in pure bending, given by Eq. (35).

ML limit moment in pure bending.

N = subscript denoting cøntribution of hoop force.

— hoop force per unit length .

N0 axial force which causes yield iii absence of bending ,
given by Eq. (34).

a,b = subscripts denoting two loading surfaces at a corner.
See Fig. 8.

C — acoustic velocity in water.

e total strain matrix, defined by Eq. (22).
S

eE, e~ = elastic and plastic components of e, respectively .

h = shell wall thickness.

i = generic subscript denoting discrete time step.

k = longitudinal curvature of shell.

value of k at yield in pure bending.

kE, k~ = elastic and plastic components of k, respectively.

L = depth of elastic shell wall: See Fig. 1.

_ _  
----~~~~~--—-
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p = dynamic pressure in contained water .

p
1 

= incide— i t f luid pressure on shell wall caused by cleaning
of relief value .

r = radial cylindrical coordinate. See Fig. 1.

r1, r2 r3 = radii of pedestal , containment vessel bottom,
and shell wall , respectively . See Fig. 1.

S = stress matrix , defined by Eq. ( 2 6 ) .

~~~ 
= stress matrix iterations. See Sect. 3

t time .

t. = time at i th discrete interval .

u = radial component of fluid velocity .

u = (vector) fluid velocity .

v = axial component of fluid velocity .

w = ( rad ia l )  displacement of shell wall , assumed positive
outward.

z = axial cylindrical coordinate . See Fig. 1.

= denotes temporal increment.

7 = (vector)  gradient .

= angular  discontinuity in shell bottom . See Fig.  1.

B = quant i ty  de f i ned by Eq. ( A l ) .

= denotes a res tr ic ted temporal rate . See Eqs.  ( 4 5 )
and (47). 
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= total circumferential strain in shell well.

= elastic and plastic components of € , respectively.

X = quantity defined by Eq. ( 4 9 ) .

X a l X b = value of X for  two loading function at a corner.

v = Poisson ’ s rat io.

= uniaxial yield stress.

p = density of fluid.

= density of shell wall .

F!
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